Algebraic Systems for DNA Origami Motivated by Jones Monoids

<u>James Garrett</u>, Nataša Jonoska, Hwee Kim, and Masahico Saito University of South Florida

> jgarrett1@mail.usf.edu February 16, 2019

Overview

1 Introduction

2 Constructing an Origami Monoid

3 Algebraic Structure of Origami Monoid

Monoid Preliminaries

Definition

The free monoid over an alphabet Σ is the set of all finite (possibly empty) strings of symbols from Σ , denoted Σ^* , equipped with string concatenation. The identity element is the empty word, and is written as 1 or ϵ .

Example

For $\Sigma = \{a, b\}$, some elements of Σ^* include 1, a, b, and aaba. $ab \cdot ba = abba$.

Rewriting Preliminaries

Definition

A rewriting system R for alphabet Σ is a subset of $\Sigma^* \times \Sigma^*$, and for $(u,v) \in R$, we write $u \to v$. We may extend these relations by defining $s \to t$ if there exist $x, y, u, v \in \Sigma^*$ such that s = xuy, t = xvy, and $u \to v$.

Example

```
For \Sigma = \{a, b\} and R = \{(aa, a), (bb, b), (aba, a), (bab, b)\}, we have abab \underset{R}{\rightarrow} ab since \underline{abab} \underset{R}{\rightarrow} \underline{ab} and \underline{abab} \underset{R}{\rightarrow} a\underline{b}.
```

Rewriting Preliminaries

Definition

For Σ with rewriting system R, define a relation \sim on Σ^* by $u \sim v$ if there exist $s_1, s_2, \ldots, s_n \in \Sigma^*$ such that

$$u \xrightarrow{R} s_1 \xrightarrow{R} \dots \xrightarrow{R} s_n \xrightarrow{R} v.$$

We may extend \sim to an equivalence relation \sim^* , then $M = \Sigma^* / \sim^*$ is the monoid associated with alphabet Σ and rewriting system R.

Example

For
$$\Sigma = \{a, b\}$$
 and $R = \{(aa, a), (bb, b), (aba, a), (bab, b)\}$, $M = \Sigma / \sim^* = \{[1], [a], [b], [ab], [ba]\}$. $[a] = [aaa] = [aba] = [aababa]$. $[a] \cdot [ab] = [aab] = [ab]$.

Jones Monoids

Introduction 000000

• \mathcal{J}_n has generators h_1, \ldots, h_{n-1}

Define multiplication by vertical concatenation

Abramsky, S., Temperley-Lieb algebra: from knot theory to logic and computation via quantum mechanics. arXiv:0910.2737 (2009)

Jones Monoids

- 3 types of rewriting rules:
 - \bullet $h_i h_i h_i \rightarrow h_i$, |i j| = 1
 - $h_i h_i \rightarrow h_i$
 - $h_i h_j \rightarrow h_j h_i$, $|i-j| \geq 2$

DNA Origami

- Create complex structures at a nano-level
- Long, folded single-stranded DNA scaffold strand (black)
- Many short connecting staple strands (color)

Rothemund, P. W. Folding DNA to Create Nanoscale Shapes and Patterns. Nature, 440. 297-302 (2006).

Building Blocks of DNA Origami

Common patterns in DNA origami

Identified Building Blocks

Generators for an Origami Monoid

- n number of vertical scaffold strands
- Index i = 1, ..., n-1 indicating location of α or β
- Direction varies with parity of i

Concatenation of Origami Generators

- Line up and connect scaffold
- Connect staples following original diagram

Rewriting Rules for DNA Origami

For $\gamma \in \{\alpha, \beta\}$:

Rewriting Rules for DNA Origami

For $\gamma \in \{\alpha, \beta\}$ and $\overline{\alpha} = \beta$, $\overline{\beta} = \alpha$:

Ex:
$$\alpha_i \alpha_{i+2} \rightarrow \alpha_{i+2} \alpha$$

Substitution Rewriting Rules

In addition, we consider $\gamma \in \{\alpha\beta, \beta\alpha, \alpha\beta\alpha, \beta\alpha\beta\}$

Definition of Origami Monoid \mathcal{O}_n

Definition

For $n \in \mathbb{N}$, define \mathcal{O}_n to be the monoid generated by $\alpha_1, \ldots, \alpha_{n-1}, \beta_1, \ldots, \beta_{n-1}$ with relations generated by rewriting rules of $\gamma \in \{\alpha, \beta\}$ for (1) - (4) and $\gamma \in \{\alpha\beta, \beta\alpha, \alpha\beta\alpha, \beta\alpha\beta\}$ for (1) - (2).

(1)
$$\gamma_i \gamma_i \rightarrow \gamma_i$$

(2)
$$\gamma_i \gamma_j \gamma_i \rightarrow \gamma_i$$
, $|i - j| = 1$

(3)
$$\gamma_i \gamma_j \rightarrow \gamma_j \gamma_i$$
, $|i - j| \ge 2$

(4)
$$\gamma_i \overline{\gamma}_i \rightarrow \overline{\gamma}_i \gamma_i$$
, $|i - j| \ge 1$

Connections to Jones Monoid

Definition

Define \mathcal{O}_n^{α} to be the submonoid of \mathcal{O}_n generated by α s, and similarly for \mathcal{O}_n^{β} . Define $\mathcal{O}_n^{\alpha\beta} = [\mathcal{O}_n \setminus (\mathcal{O}_n^{\alpha} \cup \mathcal{O}_n^{\beta})] \cup \{1\}$.

Lemma

$$\mathcal{J}_n\cong\mathcal{O}_n^{\alpha}\cong\mathcal{O}_n^{\beta}.$$

Proof.

If $h_1, \ldots h_{n-1}$ are the generators of \mathcal{J}_n , define a map $p_\alpha: \mathcal{O}_n \to \mathcal{J}_n$ by $p_\alpha(\alpha_i) = h_i$ and $p_\alpha(\beta_i) = 1$. Define p_β similarly by $p_\beta(\alpha_i) = 1$ and $p_\beta(\beta_i) = h_i$. Observe that p_α and p_β are monoid morphisms, and that $p_\alpha|_{\mathcal{O}_n^\alpha}$ and $p_\beta|_{\mathcal{O}_n^\beta}$ are bijections.

Connections to Jones Monoid

Definition

Define $p: \mathcal{O}_n \to \mathcal{J}_n \times \mathcal{J}_n$ by $p(u) = (p_{\alpha}(u), p_{\beta}(u))$.

Lemma

p is an onto monoid morphism.

Structure \mathcal{O}_n for $n \leq 6$

We use computer program GAP to study \mathcal{O}_n for small n

n	$ \mathcal{J}_n $	$ \mathcal{J}_n ^2$	$ \mathcal{O}_n $
2	2	4	7
3	5	25	45
4	14	196	294
5	42	1764	2180
6	132	17424	19087

The GAP Group, *GAP – Groups, Algorithms, and Programming, Version* 4.9.3; 2018, (www.gap-system.org).

Elements of \mathcal{O}_3

1, α_1 , α_2 , β_1 , β_2 , $\alpha_1\alpha_2$, $\alpha_1\beta_1$, $\alpha_1\beta_2$, $\alpha_2\alpha_1$, $\alpha_2\beta_1$, $\alpha_2\beta_2$, $\beta_1\alpha_1$, $\beta_1\beta_2$, $\beta_2\alpha_2$, $\beta_2\beta_1$, $\alpha_1\alpha_2\beta_1$, $\alpha_1\alpha_2\beta_2$, $\alpha_1\beta_1\alpha_1$, $\alpha_1\beta_1\beta_2$, $\alpha_1\beta_2\alpha_2$, $\alpha_1\beta_2\beta_1$, $\alpha_2\alpha_1\beta_1$, $\alpha_2\alpha_1\beta_2$, $\alpha_2\beta_1\alpha_1$, $\alpha_2\beta_1\beta_2$, $\alpha_2\beta_2\alpha_2$, $\alpha_2\beta_2\beta_1$, $\beta_1\alpha_1\alpha_2$, $\beta_1\alpha_1\beta_1$, $\beta_1\alpha_1\beta_2$, $\beta_1\beta_2\alpha_2$, $\beta_2\alpha_2\alpha_1$, $\beta_2\alpha_2\beta_1$, $\beta_2\alpha_2\beta_2$, $\beta_2\beta_1\alpha_1$, $\alpha_1\alpha_2\beta_1\beta_2$, $\alpha_1\alpha_2\beta_2\beta_1$, $\alpha_1\beta_1\beta_2\alpha_2$, $\alpha_2\alpha_1\beta_1\beta_2$, $\alpha_2\alpha_1\beta_2\beta_1$, $\alpha_2\beta_2\beta_1\alpha_1$, $\beta_1\alpha_1\alpha_2\beta_2$, $\beta_1\alpha_1\beta_2\alpha_2$, $\beta_2\alpha_2\alpha_1\beta_1$, $\beta_2\alpha_2\beta_1\alpha_1$

Green's Classes

Definition

For monoid M, define equivalence relations \mathcal{L} , \mathcal{R} , \mathcal{D} , \mathcal{H} on M by $a\mathcal{L}b$ if there exist $x,y\in M$ such that xa=b and yb=a, $a\mathcal{R}b$ if there exist $x,y\in M$ such that ax=b and by=a, $a\mathcal{D}b$ if there exists $c\in M$ such that $a\mathcal{L}c$ and $c\mathcal{R}b$, and $a\mathcal{H}b$ if $a\mathcal{L}b$ and $a\mathcal{R}b$.

The equivalence classes of these relations are Green's \mathcal{L} , \mathcal{R} , \mathcal{D} , and \mathcal{H} classes, respectively.

- ullet $\mathscr L$ and $\mathscr R$ can also be described by principal ideals.
- In a finite monoid, \mathscr{D} -classes correspond to two-sided principal ideals.

Green's Classes for Jones Monoid

- \mathcal{L} classes: columns
- \mathscr{R} classes: rows

- \mathscr{D} classes: big boxes
- \mathcal{H} classes: small boxes

Relation Between Green's Classes of \mathcal{O}_n

- 2 copies of \mathcal{D} -classes of \mathcal{J}_n in \mathcal{O}_n
- Other \mathscr{D} -classes of \mathcal{O}_n correspond to \mathscr{D} -classes of $\mathcal{J}_n \times \mathcal{J}_n$

Relation Between Green's Classes of \mathcal{O}_n , n=6

Conjectures for General \mathcal{O}_n

Conjecture

 \mathcal{O}_n is finite for all n.

Conjecture

For every \mathscr{D} -class D of $\mathcal{J}_n \times \mathcal{J}_n$, there exists a unique \mathscr{D} -class D' of \mathcal{O}_n such that p(D') = D.

Acknowledgements

This work is partially supported by NIH R01GM109459, and by NSF's CCF-1526485 and DMS-1800443. This research was also partially supported by the Southeast Center for Mathematics and Biology, an NSF-Simons Research Center for Mathematics of Complex Biological Systems, under National Science Foundation Grant No. DMS-1764406 and Simons Foundation Grant No. 594594.

