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Monoid Preliminaries

Definition

The free monoid over an alphabet ¥ is the set of all finite (possibly
empty) strings of symbols from ¥, denoted ¥*, equipped with
string concatenation. The identity element is the empty word, and
is written as 1 or e.

Example

For ¥ = {a, b}, some elements of X* include 1, a, b, and aaba.
ab - ba = abba.
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Rewriting Preliminaries

Definition

A rewriting system R for alphabet ¥ is a subset of 2* x ¥*, and
for (u,v) € R, we write u — v. We may extend these relations by
defining s ? t if there exist x, y, u, v € ¥* such that s = xuy,

t =xvy, and u — v.

Example

For ¥ = {a, b} and R = {(aa, a), (bb, b), (aba, a), (bab, b)}, we
have abab = ab since

abab ? ab and

abab — ab.
R
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Rewriting Preliminaries

Definition
For & with rewriting system R, define a relation ~ on ¥* by u ~ v
if there exist s1,5p,...,S, € £* such that

U—8 — ... =5, = V.
R R R R

We may extend ~ to an equivalence relation ~*, then M = ¥*/ ~*
is the monoid associated with alphabet 2 and rewriting system R.

Example

For ¥ = {a, b} and R = {(aa, a), (bb, b), (aba, a), (bab, b)},
M=%/ ~*={[1],[al, [b], [ab], [ba]}.

[a] = [aa] = [aaa] = [aba] = [aababal.

[a] - [ab] = [aab] = [ab].
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Jones Monoids

o Jp has generators hy,..., hp_1
1 :2 3 n 1 n
i ‘ l Il -
' b )
123 ' 1 7
h1 hn—l

o Define multiplication by vertical concatenation

SR

Abramsky, S., Temperley-Lieb algebra: from knot theory to logic and
computation via quantum mechanics. arXiv:0910.2737 (2009)
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Jones Monoids

o 3 types of rewriting rules:
) h,'hjh,' — h,', |I —j| =1

] h,'h,'—) h,‘

) h,'hj—)hjh,', |I—_j|22

d W 17 A\
~ 5 ' iy

hihohy = hy hi = hy

N2 = 4N

hihs = hshy
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DNA Origami

o Create complex structures at a nano-level
o Long, folded single-stranded DNA scaffold strand (black)

o Many short connecting staple strands (color)

ey

Rothemund, P. W. Folding DNA to Create Nanoscale Shapes and

Patterns. Nature, 440. 297-302 (2006).
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Building Blocks of DNA Origami

o Common patterns in DNA origami
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Generators for an Origami Monoid

o n — number of vertical scaffold strands

o Index i =1,...,n— 1 indicating location of a or 3
o Direction varies with parity of /
. Jd | | |
] ) ot g
—-— ——\

D

\
N /’
i

()

«j, i odd «j, [ even Bi, i odd B;, I even

s

Ex: a4, n=206
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Concatenation of Origami Generators

o Line up and connect scaffold
o Connect staples following original diagram

i . i ;
S — h —_ 1
==~ N’ r— | —
{ 1 ==~ { ! -

(Y _ Y
f

. = ' . =
e e - pinieid
== r—=N -

' | Y N
1]

Qi+l Qi1
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Rewriting Rules for DNA Origami

For v € {a, 8} :

(2) vivjvi = i li—jl =1
o

.
N ———
g — | | = [~ r—=x
J . ¢ ! t 4 A
ey ==~ il
O ¢ | ]
' ===
u A
Ex: aja; — «; o
187, i

Ex: Q10 — QG
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B
Rewriting Rules for DNA Origami

Fory € {a,B}anda =4, B =«

(3) iy = i li—j| > 2
1)

'
| S— \.._I'
r— —=
i Y
' | = ' '
T T

| S— L

7N ===

L 1 L l

L

Ex: ajajir — ajioa
(4) vy — i [ —Jl > 1

U

N
—

I

—

———— Ny

S

N

)

Ex: aifit1 — Biyiai

L/
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Substitution Rewriting Rules
In addition, we consider v € {af, Ba, afa, Baf}

]
i
|

1 1 1
i ] ;
| I 1
\ - !
()
H 1
i
7 =afin (1)
aiBiciBi — aif; @ifiBiv10it1 7 Biprviv10fi
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Definition of Origami Monoid O,

Definition
For n € N, define O, to be the monoid generated by
01,y 0n—1,01,---,Pn—1 with relations generated by rewriting

rules of v € {a, B} for (1) — (4) and v € {af, fa, afa, faS} for
(1) —(2).

(1) vivi = i (2) vivivi = i li—Jjl =1

(3) vivj — i i — | =2 (4) v7; =i li—jl>1
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Connections to Jones Monoid

Definition
Define Of to be the submonoid of O, generated by as, and
similarly for OF. Define 057 = [0,\(0> U O] U {1}.

Lemma

Tn = 02208

Proof.

If hy,...h,—1 are the generators of 7,, define a map

Pa : On — T by pa(cj) = hi and p,(5i) = 1. Define pg similarly
by ps(ai) = 1 and pg(3i) = hi. Observe that p, and pg are
monoid morphisms, and that p,|os and p5|05 are bijections. O
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Define p: Op — Jn x T by p(u) = (pa(u), ps(u)). '

p is an onto monoid morphism.
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Structure O, for n < 6

We use computer program GAP to study O, for small n

MARRNAGREeN
2 4 7
5 25 45
14 196 294
42 1764 2180
132 | 17424 | 19087

SOl WNS

The GAP Group, GAP — Groups, Algorithms, and Programming, Version

4.9.3; 2018, (www.gap-system.org).
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Elements of O3

1, o1, a2, B1, B2, a1z, a1f1, a1f, azaa, a2ffr, azf, froa,
B1B2, Braa, B2B1, a1, arazfBz, arfiar, ai1fifa, aifaz,
13281, avar B, azxanfa, axBiar, axf1B2, azBa0, azfB2f3,
Braraz, Braafr, fraiBz, BiBaae, faazar, BaanfBl, Baozf2,
B2fB1ra1, a1 B2, arazB2p1, a1fifaaz, azaififa, axarff,
azaB101, BrarazBz, Brarfaaz, Bronarfl, BaazfBron
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Green's Classes

Definition

For monoid M, define equivalence relations &, #, &, 7 on M by
a.Zb if there exist x, y € M such that xa = b and yb = a,

aZb if there exist x,y € M such that ax = b and by = a,

adb if there exists ¢ € M such that a.¥c and c#b, and

a’b it a.¥b and aZb.

The equivalence classes of these relations are Green's .&, #Z, 2,
and JZ classes, respectively.

o % and Z can also be described by principal ideals.

o In a finite monoid, Z-classes correspond to two-sided principal
ideals.
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o & — classes: columns o 9 — classes: big boxes

o X — classes: rows o € — classes: small boxes
1 E

Je

2

T s
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Relation Between Green's Classes of O,

o 2 copies of Z-classes of 7, in O,
o Other Y-classes of O, correspond to Z-classes of 7, X J,

T3
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Algebraic Structure of Origami Monoid
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Relation Between Green's Classes of O,, n = 6
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O, is finite for all n. '

For every D-class D of J, X J,, there exists a unique 9-class D’
of Oy such that p(D') = D.
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