Mathematical models for describing molecular self-assembly

Margherita Maria Ferrari, and Nataša Jonoska
University of South Florida

mmferrari@usf.edu
18 January, 2019
New laboratory techniques have been developed using the Watson-Crick complementarity properties of DNA strands to assemble 2D and 3D nanostructures.

The earliest self-assembly process builds target structures from DNA **branched junction molecules**.
Let Σ be a finite set of symbols called an **alphabet**

Two sticky-ends having the same sequence of bases are of the same **sticky-end type**

We denote a particular sticky-end type by $a \in \Sigma$ and its complement by $\hat{a} \in \hat{\Sigma}$

\[
\begin{align*}
 a &= \text{ATCGTT} \leftrightarrow \hat{a} = \text{TAGCAA} \\
 b &= \text{CCATTG} \leftrightarrow \hat{b} = \text{GGTAAC}
\end{align*}
\]

$\Sigma \cup \hat{\Sigma}$ is the set of sticky-end types

A **tile** is the combinatorial abstraction of a branched junction molecule: it consists of a vertex with labeled half-edges
Flexible Tiles VS Rigid Tiles

A **rigid tile** has the following properties:

- the arms are straight, rigid, and of unit length
- the arms are fixed at specified angles with respect to each other about the vertex
- the arms do not twist, compress, or elongate
- a tile has at least two arms
- two tiles connect only at the sticky-ends forming a straight edge when they connect
Flexible tiles:

- Which complexes can be assembled from a given set of tiles?
- How can we efficiently build a target graph?
- ...

Models for rigid tiles

1. Geometric model
2. Chemical model
3. Carpenter model
4. Chemical carpenter model

Ellis-Monagahan, Jonoska, Pangborn, DNA nanostructures: mathematical design and problem encoding, in Algebraic and Combinatorial Computational Computational Biology (2018), pp. 35-60
The geometric model

We record the geometric structure of the tile:

► the position of the arms with respect to the vertex

► the inter-arm angles

A k-armed geometric tile is an ordered pair $\tau = (P, A)$ where

► $P = (x_P, y_P, z_P)$ represents the position of the tile’s center

► $A = \{\vec{v}_1, \ldots, \vec{v}_k\}$ is a set of k unit vectors that are all distinct
The chemical model

We record:

- the geometric structure of the tile
- the sticky-end types for each arm

A chemical arm type is an ordered pair \((\vec{v}, a)\), where \(\vec{v} \in \mathbb{R}^3\) is a unit vector and \(a \in \Sigma \cup \hat{\Sigma}\) is a sticky-end type.

A \(k\)-armed chemical tile is an ordered pair \(\tau = (P, A)\) where \(A = \{(\vec{v}_1, a_1), \ldots, (\vec{v}_k, a_k)\}\) is a set of \(k\) chemical arm types such that \(\vec{v}_i\) are all distinct.
The carpenter model

We record:

- the geometric structure of the tile
- the orientation of the sticky-ends with respect to the tile

A **carpenter arm type** is an ordered pair (\vec{v}, \vec{n}), where \vec{v} and \vec{n} are unit vectors in \mathbb{R}^3 such that $\vec{v} \perp \vec{n}$

A **k-armed carpenter tile** is an ordered pair $\tau = (P, A)$ where $A = \{(\vec{v}_1, \vec{n}_1), \ldots, (\vec{v}_k, \vec{n}_k)\}$ is a set of k carpenter arm types such that \vec{v}_i are all distinct
The chemical carpenter model

We record:

- the geometric structure of the tile
- the orientation of the sticky-ends with respect to the tile
- the sticky-end type of each arm

A chemical carpenter arm type is an ordered triple (\vec{v}, \vec{n}, a) where \vec{v} and \vec{n} are orthogonal vectors in \mathbb{R}^3 and $a \in \Sigma \cup \hat{\Sigma}$ is a sticky-end type.

A chemical carpenter tile with k arms is a pair $\tau = (P, A)$ where $A = \{(\vec{v}_1, \vec{n}_1, a_1), \ldots, (\vec{v}_k, \vec{n}_k, a_k)\}$ is a set of k chemical carpenter arm types such that \vec{v}_i are all distinct.
Chemical tile types

When are two chemical tiles “distinct”?

Two chemical tiles \(\tau = (P, A) \) and \(\tau' = (P', A') \) are equivalent \((\tau \sim_c \tau')\) if there exists a rotation \(\mathcal{R} \) such that

\[
A' = \mathcal{R}(A) = \{(\mathcal{R}\vec{v}_1, a_1), \ldots, (\mathcal{R}\vec{v}_k, a_k)\}
\]

A chemical tile type is an equivalence class of chemical tiles with respect to \(\sim_c \)
Geometric Model

\[A' = R(A) = \{ R\vec{v}_1, R\vec{v}_2, \ldots, R\vec{v}_k \} \]

Carpenter Model

\[A' = R(A) = \{ (R\vec{v}_1, R\vec{n}_1), \ldots, (R\vec{v}_k, R\vec{n}_k) \} \]

Chemical Carpenter Model

\[A' = R(A) = \{ (R\vec{v}_1, R\vec{n}_1, a_1), \ldots, (R\vec{v}_k, R\vec{n}_k, a_k) \} \]
Joining Rigid Tiles

Geometric model

\[\vec{v}_i = -\vec{v}_j \]
\[P + \vec{v}_i - \vec{v}_j = P' \]

Chemical model

\[(\vec{v}_j, a_j) \]
add \(a_j' = \hat{a}_i \)

Carpenter model

\[(\vec{v}_j, \vec{n}_j) \]
add \(\vec{n}_j' = -\vec{n}_i \)

Chemical Carp. model

\[(\vec{v}_j, \vec{n}_j, a_j) \]
add both
A **rigid graph** \(G \) is a straight edge embedding of a graph \(G \) in \(\mathbb{R}^3 \)

Notation:

For a graph \(G \), let \(\mu \) be the map \(\mu : E(G) \to V^{(2)} \) where \(V^{(2)} \) is the set of unordered pairs of elements of \(V(G) \).

If \(\mu(e) = \{u, v\} \), then \(u \) and \(v \) are the vertices incident with \(e \).

We denote by \(H(G) \) the set of **half-edges** of \(G \).

For \(v \in \mu(e) \), we write \((v, e) \) to denote the half-edge of \(e \) incident to \(v \).
An assembly design of G is a labeling $\lambda : H(G) \rightarrow \Sigma \cup \hat{\Sigma}$ such that if $e \in E(G)$ and $\mu(e) = \{u, v\}$, then $\lambda(v, e) = \lambda(u, e)$.

If $\lambda(v, e) = a$ and $\lambda(u, e) = \hat{a}$, we associate:

- the line segment e with $\vec{e} = u - v$
- the half-edge (v, e) with $\vec{w}_{(v, e)} = \frac{1}{2} \vec{e}$
- the half-edge (u, e) with $\vec{w}_{(u, e)} = -\frac{1}{2} \vec{e}$
A set of chemical tiles associated with an assembly design λ of G is a set $S^c_\lambda(G) = \{ \tau_v \mid v \in V(G) \}$, where $\tau_v = (v, A_v)$ and $A_v = \{ (\vec{w}_{(v,e)}, \lambda(v,e)) \mid e \in E(G), v \in \mu(e) \}$.

A chemical pot \mathcal{P}^c is a set of chemical tile types

\mathcal{P}^c realizes the rigid graph G if there exists an assembly design λ of G such that every chemical tile in $S^c_\lambda(G)$ is equivalent to an element in \mathcal{P}^c.
We consider:

- a labeling \(\lambda : H(G) \to \Sigma \cup \hat{\Sigma} \) as already defined

- a labeling \(\vec{\lambda} \) of the half-edges of \(G \) with the unit vectors of \(\mathbb{R}^3 \) such that if \(e \in E(G) \) and \(\mu(e) = \{u, v\} \), then \(\vec{\lambda}(v, e) \) is orthogonal to the line segment \(e \) and \(\vec{\lambda}(v, e) = -\vec{\lambda}(u, e) \)
Distinction between the models

The set of rigid graphs realized by a pot \(P \) is called the output of \(P \) and is denoted by \(O(P) \).

For \(k \in \mathbb{N} \), let

\[C_k = \{ O(P) \mid P \text{ has } k \text{ tile types} \} \]

We compare the four models by considering the following sets:

\[C^g_k \quad C^c_k \quad C^{cp}_k \quad C^{cc}_k \]

Are these distinct?

Three-dimensional case
For \(k = 1 \), the models are distinct from each other.

Two-dimensional case
For \(k = 1 \), \(C^g_1 \neq C^c_1, C^{cc}_1 \) and \(C^{cp}_1 \neq C^c_1, C^{cc}_1 \).
For \(k \in \mathbb{N} \), we have \(C^g_k = C^{cp}_k \) and \(C^c_k = C^{cc}_k \).
Example: the cube

Chemical (Carpenter) Model

If $\mathcal{P}^c = \{\tau\}$ realizes the cube, then the multiset of sticky-end types of τ is $\{a, a, \hat{a}\}$ or $\{a, \hat{a}, \hat{a}\}$

A cube requires at least 2 chemical tile types
Work supported by the NSF grants CCF-1526485 and DMS-1800443, the NIH grant R01GM109459-01, and the Southeast Center for Mathematics and Biology (an NSF-Simons Research Center for Mathematics of Complex Biological Systems) under NSF grant DMS-1764406 and Simons Foundation grant 594594