Double-Occurrence Words and Word Graphs

Daniel Cruz, Nataša Jonoska, Brad Mostowski, Lukas Nabergall, Masahico Saito
University of South Florida

bmostowski@mail.usf.edu
December 1, 2017
Overview

1. Preliminaries

2. Patterns in Double-Occurrence Words

3. Classifying Word Graphs
Alphabets and Words

Definition
An **alphabet** Σ is a finite or countable set. Elements in Σ are called **symbols**.

Definition
A **word** u over Σ is a finite sequence of symbols in Σ. The set of all words over Σ is denoted Σ^*. The word u is called a **double-occurrence word**, or simply a DOW, if every symbol in Σ that appears in u appears twice. $\Sigma[u]$ is the set of all symbols used by u.

Example
456234 and 121323 are words over $\Sigma = \mathbb{N}$. In particular, 121323 is a DOW.
Factors and Subwords

Definition

Let u be a DOW. v is a **factor** of u if $u = u_1vu_2$ for some u_1, u_2, in which case we write $v ⊏ u$.

Example

231 is a factor of 123123

Definition

Let u be a DOW. A subsequence v of u is a called a **subword**.

Example

233 is a subword of 122133

Definition

Let $u = u_1 \cdots u_n$ be a DOW. $u^R = u_n \cdots u_1$ is called the **reverse** of u.
Ascending Order

We are concerned with the structure of DOWs and hence need a notion for this structure. Ascending order gives that structure.

Definition

Let u be a DOW. u is in **ascending order** if $1, \ldots, i - 1$ appear before the first instance of i. The **ascending order representation** of u is a DOW where the ith unique symbol to appear in u is rewritten as i.

Example

123123, 121323, 1234155423 are all words in ascending order. 3434 in ascending order is 1212.
Ascending Order Equivalence

Definition

Two DOWs u and v are **ascending order equivalent** if they have the same ascending order representation, in which case we write $u \sim v$.

Example

- $1212 \sim 2121$
- $456645 \sim 341134$
- $43214321 \not\sim 12344321$
Pattern Appearance

Definition

Let \(u \sim 123 \cdots n \). \(uu \) (resp. \(uu^R \)) is called a **repeat pattern** (resp. **return pattern**) of size \(n \).

Example

- 45677654 is a return pattern of size 4.
- 654321654321 is a repeat pattern of size 6.
- 11 is both a repeat and return pattern of size 1.

We are only concerned with patterns of size \(> 1 \).
Pattern Appearance (Cont.)

Definition

Let u be a DOW. The repeat (resp. return) pattern of size i appears in u if

$$u = u_1 \alpha_1 u_2 \alpha_2 u_3$$

where the u_i’s are each (possibly empty) factors of u, $\alpha_1 \sim 1 \cdots i$, and $\alpha_2 = \alpha_1$ (resp. $\alpha_2 = \alpha_1^R$).

Example

The repeat pattern of size 2 appears in 112323 and 123312, but not in 121323.
Insertions

Consider a DOW u. We wish to insert a size i repeat/return pattern into u and still obtain a DOW. This process involves the following:

- Take a size i repeat (resp. return) pattern that doesn’t use any letters in u and pick a set of indices $1 \leq j, k \leq |u| + 1$
- Insert the first half (resp. second half) of this pattern before the jth (resp. k) letter in u for some j (resp. k)
- The resulting word is denoted $u \cdot \rho_i(j, k)$ (resp. $u \cdot \tau_i(j, k)$)

Definition

Let u be a DOW. $\rho_i(j, k)$ (resp. $\tau_i(j, k)$) denotes the insertion of a repeat (resp. return) pattern of size i in indices j, k.

Remark

The notation in practice is not an issue since we are only concerned with ascending order representation of DOWs.
Example

Let \(u = 123123 \). Then, \(u \cdot \rho_3(4, 6) \sim 123\overline{456}12\overline{456}3 \)
Shifting Codes

Definition
Let p be a subword of u, and let I be an insertion. The **shifting code of p under I in u** is a sequence $c_I(p) = c_1, c_2, \ldots, c_{|p|}$ where c_ℓ is the number of letters which the ℓth letter in p is shifted after inserting I into u.

Proposition
Let $f_i(j, k), g_i(j, k)$ be insertions. If $\exists a \in \Sigma[u]$ s.t. $c_f(aa) \neq c_g(aa)$ and $c_f(a) = c_g(a)$ for either instance of a, then $u \not\sim v$.

Example
Consider $1212 \cdot \tau_2(4, 5) \sim 12134243$. Then,

$$
c_\tau(11) = 0, 0$$
$$
c_\tau(22) = 0, 2$$
Example

Consider the following DOWs:

\[1212 \cdot \tau_2(4, 5) \sim 12134243 \]
\[1212 \cdot \rho_2(3, 5) \sim 12341234 \]

Then,

\[c_\tau(11) = 0, 0 \]
\[c_\rho(11) = 0, 2 \]

hence the two DOWs are not equivalent.
Pattern Destruction

From the previous example, it is possible that a pattern that appears in a DOW u may not appear in $u \cdot f_i(j, k)$.

Definition

Let p be a repeat/return pattern. Suppose p appears in u and $u \cdot f_i(j, k) \sim v$. We say $f_i(j, k)$ **destroys** p if p is not a repeat/return pattern in v and **completely destroys** p if p contains no instance of a nontrivial pattern in v.

Example

$1212 \cdot \rho_1(4, 4) \sim 121332$

$\rho_1(4, 4)$ completely destroys 1212.

$123321 \cdot \rho_1(3, 7) \sim 12433214$

$\rho_1(3, 7)$ destroys 123321. 1221 still appears in 123321 in the new word.
Reverse Proposition

Proposition

Let u and v be two double occurrence words. Then,

$$(u \cdot f_i(j, k))^R \sim u^R \cdot f_i(|u| + 2 - k, |u| + 2 - j)$$

Example

Let $u = 121332$. Then,

$$u \cdot \rho_2(2, 5) \sim 1452134532$$

$$u^R \cdot \rho_2(3, 6) \sim 2345312451$$

$$(u^R \cdot \rho_2(3, 6))^R \sim 1542135432$$
Word Graphs

Based on the notion of insertions on double-occurrence words, we can construct graphs on these DOWs, drawing edges between words when there is an insertion that takes one DOW to another.

Definition

A word graph $G = (V, E)$ is a graph with the vertices DOWs and the edges representing repeat/return insertions. For $v_1, v_2 \in V$. (v_1, f, v_2) is an edge in E if there is an insertion $f_i(j, k)$ such that $v_1 \cdot f_i(j, k) \sim v_2$.
An Example of a Word Graph
We would like to figure the structure of the word graph on the set of all double-occurrence words.

Where do we start? Let’s try to classify cycles on this graph. The simplest cycles? Digons.

Under what situations do digons appear? In particular, given a word graph \(G = (V, E) \) on double-occurrence words, does there exist \(u_1, u_2 \in V \) such that \((u_1, \rho, u_2), (u_1, \tau, u_2) \in E \)?

Another way of stating the above: Does there exist a situation where \(u \cdot \rho_i(j, k) \sim u \cdot \tau_i(m, n) \)?
Classification of Digons

Naturally we suspect such a situation does not exist for \(i > 1 \). By counting the number of patterns that appear in \(u \cdot \rho_i(j, k) \) and \(u \cdot \tau_i(m, n) \), the following conclusion can be reached:

Lemma

Let \(u \) be a double-occurrence word and \(i > 1 \). Then, \(u \cdot \rho_i(j, k) \sim u \cdot \tau_i(m, n) \) implies the following statements hold:

1. \(u \) contains an instance of a size \(i \) repeat pattern, \(p \), and a size \(i \) return pattern, \(q \), with \(2 \leq i \leq 3 \).
2. \(\rho_i(j, k) \) completely destroys \(p \) and \(\tau_i(m, n) \) completely destroys \(q \).
Theorem

For $i > 2$, there exists no pair of insertions $\rho_i(j, k)$ and $\tau_i(m, n)$ such that $u \cdot \rho_i(j, k) \sim u \cdot \tau_i(m, n)$.

Proof.

Suppose otherwise. Then, u has a size 3 return pattern, say $p = 123321$, which is completely destroyed by τ. Then, $c_\tau(11)$ is 0, 6. But this means $c_\rho(11) = 0, 6$ or 3, 3, whence $c_\rho(p) = 0, 0, 0, 6, 6, 6$ or 3, 3, 3, 3, 3, 3, 3. Then $c_\tau(p)$ is either:

0, 0, 0, 6, 6, 6
0, 0, 3, 3, 6, 6
0, 3, 3, 3, 3, 6

Then, τ does not completely destroy p, a contradiction.
Classification of Digons (Continued)

The previous statement holds for $i \geq 2$, but the proof requires consideration of 24 different cases!

Corollary

For $i \geq 2$, there exists no pair of insertions $\rho_i(j, k)$ and $\tau_i(m, n)$ such that $u \cdot \rho_i(j, k) \sim u \cdot \tau_i(m, n)$.
Acknowledgements

Special thanks to the USF Math/Bio Research Group.